CMS precisely measures the mass of the Higgs boson

Categories: CMS/LHC, Energy Frontier
Published on: November 13, 2019
Event in which a candidate Standard Model Higgs boson decays into two photons indicated by the green towers representing energy deposited in the electromagnetic calorimeter.

Tthe CMS Collaboration has just announced the most precise measurement of the Higgs boson’s mass achieved so far.  CMS physicists recently measured the mass of the Higgs boson to be 125.35 GeV with a precision of 0.15 GeV, an uncertainty of roughly 0.1%!  This very high precision was achieved thanks to the enormous amount of work spent over many years to carefully calibrate and model the CMS detector when it measures the particles necessary for this measurement (electrons, muons, and photons).

By the CMS Collaboration. You can read this article at the CERN web site.

Survey delivers on dark energy with multiple probes

Tags:
Published on: November 6, 2019
Researchers used the Blanco telescope in conducting the Dark Energy Survey. The Milky Way is on the left of the sky, with the Magellanic clouds in the center. Photo: Reidar Hahn

The Dark Energy Survey is the first experiment to demonstrate the immense power and promise of this combined-probes approach to survey design. The combined-probes approach is the basis for all major next-generation dark energy experiments in the 2020s including the Large Synoptic Survey Telescope. It enables scientists to make the most precise measurement of dark energy possible while protecting against measurement bias.

By Michael Troxel. You can read the article here, at the Fermilab News web site.

Dark Matter day is just around the corner

Categories: Cosmic Frontier
Tags:
Published on: October 29, 2019
Check out the Dark Matter Day website for an event near you on Oct. 31.

Fermilab is celebrating Dark Matter Day with a Facebook Live event — underground! On Thursday, Oct. 31, at 10 a.m. CT, visit Fermilab’s Facebook page to hear our scientists chat about their exciting dark matter investigations from one of Fermilab’s underground experimental halls.

By the Interactions collaboration. You can read this press release at the Fermilab News site.

Under pressure: balloons for particle acceleration

Tags: No Tags
Published on: October 23, 2019
Fermilab engineers Mohamed Hassan, left, and Donato Passarelli stand near an accelerator cavity and the patented balloons used to tune, or reshape, the cavity from the inside. Photo: Reidar Hahn

“Mohamed and Donato developed a truly beautiful method and apparatus to tune dressed cavities,” said Aaron Sauers, the lab’s patent and licensing executive. “I was excited to file the patent application on their invention.”

Hassan and Passarelli see automated balloon tuning as a possibility, which could make it as convenient to use as the current method is for unjacketed cavities. The technique may also find applications in other fields that use similar cavities.

“The hope is that people looking at this idea will get inspired and either adapt or use this technique in their own application,” Passarelli said.

By Bailey Bedford. You can read the article here, at the Fermilab news web site.

Fermilab achieves world-record field strength for accelerator magnet

Tags:
Published on: October 18, 2019
Fermilab recently achieved a magnetic field strength of 14.1 teslas at 4.5 kelvins on an accelerator steering magnet — a world record. Photo: Thomas Strauss

“This is a tremendous achievement in a key enabling technology for circular colliders beyond the LHC,” said Soren Prestemon, a senior scientist at Berkeley Lab and director of the multilaboratory U.S. Magnet Development Program, which includes the Fermilab team. “This is an exceptional milestone for the international community that develops these magnets, and the result has been enthusiastically received by researchers who will use the beams from a future collider to push forward the frontiers of high-energy physics.”

By Leah Hesla. You can read the article at the Fermilab web site, here.

Theorists discover the “Rosetta Stone” for neutrino physics

Categories: Intensity Frontier
Published on: October 9, 2019
From left: Xining Zhang of the University of Chicago, Peter Denton of Brookhaven National Laboratory and Stephen Parke of Fermilab have discovered a new mathematical identity that had eluded mathematicians for centuries. Photo: Reidar Hahn

The physics usage case of this result stems from our investigations of neutrino oscillation probabilities in matter, which involve finding eigenvectors and eigenvalues, both of which are rather complicated expressions. While the eigenvalues are somewhat unavoidably tricky, this new result shows that the eigenvectors can be written down in a simple, compact, and easy-to-remember form, once the eigenvalues are calculated. For this reason, we called the eigenvalues “the Rosetta Stone” for neutrino oscillations in our original publication — once you have them, you know everything you want to know.

By Stephen Parke. You can read this article at the Fermilab web site.

Finding the missing pieces of a puzzle of an antineutrino’s energy

Categories: Intensity Frontier
Published on: October 2, 2019
This graphic illustrates a neutrino interaction in the MINERvA detector. The rectangular box highlights the spot where a neutrino interacted inside the detector. The square box just above it highlights the appearance of a neutron resulting from the neutrino interaction. Image: MINERvA

Charged particles, like protons and electrons, can be characterized by the trails of atoms these particles ionize. In contrast, neutrinos and their antiparticle partners almost never ionize atoms, so their interactions have to be pieced together by how they break nuclei apart.

But when the breakup produces a neutron, it can silently carry away a critical piece of information: some of the antineutrino’s energy.

By  Andrew Olivier. You can read this article here, at the Fermilab News web site.

Survey delivers on dark energy with multiple probes

Published on: September 25, 2019
Researchers used the Blanco telescope in conducting the Dark Energy Survey. The Milky Way is on the left of the sky, with the Magellanic clouds in the center. Photo: Reidar Hahn

Why is our universe accelerating in its expansion? If Einstein’s theory of general relativity is correct, then the dark energy that drives this expansion accounts for nearly 70% of the total energy in the universe. However, precise measurements of the history of this expansion may reveal that new dynamic forces are in play. The Dark Energy Survey has combined its four primary cosmological probes for the first time in order to constrain the properties of dark energy. These first combined constraints are competitive with previous experiments and will improve as more data is analyzed.

By  Michael Troxel. You can read the article at Fermilab’s web site.

An interaction of slipping beams

Published on: September 18, 2019
A new method improves the circulating beams in the Recycler Ring (located beneath the ponds shown here), a major component of Fermilab’s accelerator chain. Photo: Reidar Hahn

Burov summarize the results of a study in which he instabilities in high intensity particle beams and concluded that a special feedback would make the beams much more stable. The required feedback was then designed and implemented by Nathan Eddy and his Fermilab team. The result was a 20% increase in proton beam intensity and a reduction in beam loss by a factor of 2.

By Alexey Burov. You can read the article at the Fermilab News site.

CMS upgrades take a big step

Categories: CMS/LHC
Published on: September 11, 2019
Maral Alyari, SUNY-Buffalo, and Stephanie Timpone, Fermilab, work on the forward pixel detector at SiDet in 2015. Photo: Reidar Hahn

“Complete the LHC Phase 1 Upgrades….” is how the first project-specific and concrete recommendation (Recommendation 10) of the 2014 Report of the Particle Physics Project Prioritization Panel (P5), “Building for Discovery,” starts. This short phrase has been the mission statement for U.S. CMS scientists from Fermilab and around 30 U.S. institutes for the last six years. On May 1, with the successful outcome of the Department of Energy Critical Decision 4 review, the project has been completed.

By Steve Nahn. You can read the entire article at the Fermilab News site.

«page 1 of 42

Pages
Categories
Archives

Welcome , today is Saturday, November 16, 2019