MicroBooNE demonstrates use of convolutional neural networks on liquid-argon TPC data for first time

This example image shows a charged-current neutrino interaction with decay gamma rays from a neutral pion (left). The label image (middle) is shown with the output of U-ResNet (right) where track and shower pixels are shown in yellow and cyan color respectively.

It is hard these days not to encounter examples of machine learning out in the world. Chances are, if your phone unlocks using facial recognition or if you’re using voice commands to control your phone, you are likely using machine learning algorithms — in particular deep neural networks.

By  Victor GentyKazuhiro Terao and Taritree Wongjirad

Read the article here.

MicroBooNE measures charged-particle multiplicity in first neutrino-beam-based result

This plot shows the azimuthal angle difference distribution for events with an observed multiplicity of two for data (points with error bars) and model (histogram). The peaks near positive and negative pi indicate presence of the quasielastic scattering process, while the distribution between the peaks is consistent with predicted contributions from resonance production. The shaded blue area is the estimated cosmic ray background.

MicroBooNE’s first neutrino-beam-based physics result, submitted to the journal Physics Review D this spring, launches the experiment’s journey along this path.

https://news.fnal.gov/2018/05/microboone-measures-charged-particle-multiplicity-in-first-neutrino-beam-based-result/

May 31, 2018 – By Tim Bolton and Aleena Rafique

Perfecting the noise-canceling neutrino detector

This two-dimensional event display shows the raw signal (a) before and (b) after offline noise filtering. Clean event signatures were recovered once all excess noise was removed.

If you have ever tried to watch a movie or listen to music on a plane, then you know the problem well: The roar of the engines makes it difficult to hear what’s being piped through the speakers — even when those speakers are situated in or on your ear. 

In a similar manner, at the MicroBooNE detector we identify and filter out several excess noise sources.

Click on this to go to the Fermilab News article:

MicroBooNE sees first accelerator-born neutrinos

This display shows a neutrino event candidate in the MicroBooNE detector. Image: MicroBooNE

Today the MicroBooNE collaboration announced that it has seen its first neutrinos in the experiment’s newly built detector.

http://www.fnal.gov/pub/today/archive/archive_2015/today15-11-02.html, by Chris Patrick